Year 12 Mathematics - Trial HSC 2004

QUESTION 1

- (a) Find the value of $e^{-2.5}$ correct to 3 significant figures.

 MARKS
 2
- (b) Factorise fully: $16x^2 36y^2$.
- (c) Solve for t: $\frac{4}{2t-3} = \frac{5}{t}$.
- (d) If $\frac{12}{2+\sqrt{10}}$ is written in the form $m+n\sqrt{10}$, where m and n are rational numbers, find the values of m and n.
- (f) A customer is given a 6% discount on the purchase of a radio. If the customer paid \$42.30, find the price of the radio before the discount.

QUESTION 2: (START A NEW PAGE)

(a) Differentiate the following with respect to x, leaving your answer in simplest form.

(i)
$$(3-4x)^7$$
.

$$(ii) \quad \frac{2x}{3x+1}.$$

(b) (i) Find:
$$\int \frac{6}{1-2x} dx$$
.

(ii) Evaluate:
$$\int_{0}^{\frac{\pi}{4}} \sec^{2} 3x \, dx.$$
 3

(c) Find the equation of the curve y = f(x), if $f'(x) = \frac{\sqrt{x} - 4}{x}$ and the curve passes through the point (1, 5).

JRAHS/Maths(2u)/Trial/2004

QUESTION 3: (START A NEW PAGE)

a) (i) Sketch the graph of $y = 3\cos 2\theta$ for $0 \le \theta \le \pi$.

MARKS 2

(ii) Solve $3\cos 2\theta = 1$ for $0 \le \theta \le \pi$. Give your answer correct to 2 decimal places.

2

(b) (i) On the same set of coordinate axes, sketch the functions $y = 6x - x^2$ and y = 2x, clearly showing the coordinates of their intersection points.

2x, 4

(ii) Find the area bounded by the above curves and the x-axis.

..

QUESTION 4: (START A NEW PAGE)

(a) Triangles ABC and CDE are right angled at B and D respectively (as shown in the diagram).

- Copy the diagram onto your examination answer sheet and prove that ΔABC and ΔCDE are similar.
- (ii) If AB = EC = 10cm and DE = 6cm, find the length of AC.

2

- (b) A(5, 20), B(30, 15), C(20, -10) and D are the vertices of a quadrilateral ABCD.
 - (i) Given that the diagonals AC and BD are perpendicular, prove that the point D lies on the line $y = \frac{1}{2}x$.
 - (ii) If also AB = AD, prove that the coordinates of D are (-6, -3).
 - (iii) Prove that AC bisects BD.

3

3

2

QUESTION 5: (START A NEW PAGE)

(a)	A balloon drifts 100km from point A to point B on a bearing of 028°T. At point B the balloo changes direction and drifts 160km to point C on a bearing of 114°T.				
	(i)	Draw a neat diagram showing the above information.	1		
	(ii)	Find the distance from point A to point C . Give your answer correct to the nearest kilometre.	2		
	(iii)	Find the true bearing of point $\mathcal C$ from point $\mathcal A$. Give your answer correct to the nearest degree.	3		
(b)	Wate	er flows into then out of a container at a rate (R litres/minute) given by $R = t(10-t)$.			
	(i)	Find the maximum flow rate.	2		
	(ii)	Find an expression for the volume, V litres, of water in the container at time t minutes assuming that the container is initially empty.	2		
	(iii)	Find the total time for the container to fill and then empty.	2		
OII	rom				
Ųΰ		ON 6: (START A NEW PAGE)			
(a)	(i)	Sketch the region bounded by the curve $y = \sqrt[3]{x}$, the y-axis and the line $y = 2$.	1		
	(ii)	Find the <i>exact</i> volume of the solid formed when the area in part (i) is rotated one revolution about the x-axis.	4		
(b)	The velocity v m/s of an object at time t seconds is given by $v = 3t^2 - 14t + 8$. The object initially 30m to the right of the origin.				
	(i)	Find the initial acceleration of the object.	1		
	(ii)	Find when the object is at rest.	2		
	(iii)	Find the minimum distance between the origin and the object during its motion.	4		

JRAHS/Maths(2u)/Trial/2004

QUESTION 7: (START A NEW PAGE)

(a) On an interval $x_1 \le x \le x_2$, a curve y = f(x) has the following three properties: $f(x_1) < 0$, f'(x) > 0 and f''(x) < 0. 3

Draw a section of the curve y = f(x) that illustrates all of above information.

- (b) The mass M grams of a radioactive isotope of Carbon (called Carbon 14 and written as C_{14}) found in a rock sample at time t years is given by the formula $M = Ae^{-kt}$, where A and k are constants.
 - Prove that the rate of decay of the mass of C₁₄ is proportional to the mass present at any time t.
 - (ii) If there is initially 100 grams of C_{14} and this mass decays to 75 grams in 2500 years, find the values of the A and k. Give your value of k correct to three significant figures.
 - (iii) Find the amount of $C_{\rm H}$ present at the end of 4000 years. Give your answer correct to the nearest gram.
 - (iv) Find the time required for the mass of C_{14} to decay to 5 grams. Give your answer correct to the nearest 100 years.

QUESTION 8: (START A NEW PAGE)

- (a) As wire is unwound from a cylinder, the mass of wire remaining on the cylinder decreases. It is given that the mass, $M \log n$, of wire remaining after t minutes can be calculated by the formula $M = 240 40\sqrt{t+1}$.
 - (i) Find the initial mass of wire on the cylinder.
 - (ii) Find the time taken to remove all the wire from the cylinder.
 - (iii) Find the rate at which the wire is being removed from the cylinder when half the wire has been removed.
- (b) ABCD is a parallelogram. P is a point chosen on side AB so that PD bisects $\angle ADC$ and $\angle DPC = 90^{\circ}$. (as shown in the diagram)

- (i) If $\angle PDC = \alpha^{\circ}$, prove that $\angle BPC = (90 \alpha)^{\circ}$.
- (ii) Prove that ΔBPC is isosceles.

3

JRAHS/Maths(2u)/Trial/2004

QUESTION 9: (START A NEW PAGE)

(a) Four towns A, B, C and D are joined by roads that are either straight or arcs of concentric circles with centre at O. Towns B and C are distance 3x km from O and towns A and D are both distance x km from B and C respectively and $\angle AOD = \theta$ radians. (see diagram)

- Write an expression, in terms of x and θ , for the length of the journey from town A to town D along the arc AD.
- (ii) A salesperson wants to travel from town A to town D but must visit towns B and C on the way. Write an expression, in terms of x and θ , for the length of this journey from town A to town D,
- (iii) Find the value of θ for which the journeys described in parts (i) and (ii) are the same distance.
- (b) An isosceles triangle PQR with PQ = PR is inscribed in a circle of radius 8cm (as shown in the diagram).

Given that O is the centre of the circle and M is the midpoint of the base QR of the triangle, you may assume that P, O and M are collinear and PM is perpendicular to QR.

- If the height, PM cm, of $\triangle PQR$ is h cm, prove that its area, A cm², is given by $A = h\sqrt{16h - h^2} \ .$
- Write down the restriction on the values for h.
- (iii) Find the maximum area of $\triangle POR$.

3

MARKS

1

1

2

QUESTION 10: (START A NEW PAGE)

A fund is established to provide prizes for a basketball team's annual Awards night. \$10 000 is placed in the fund one year before the first Awards night. It is decided that \$450 will be withdrawn from the fund each year to purchase the annual prizes. The money in the fund is invested at 3% p.a. compounded annually with the interest paid into the fund before each annual Awards night.							
(i)	Show that the fund contains \$9695.50 after the second Awards night.						
(ii)	If A_n is the amount in dollars remaining in the fund after the n th Awards night, prove that $A_n = 5000(3-1.03^n)$.						
(iii)) Find the amount of money in the fund after the 25 th Awards night. Give your answer correct to the nearest dollar.) 1	
(iv)	Find the maximum number of Awards nights that can be financed using this fund.						2
(v)	For the fund described above it is decided to increase the amount of money withdrawn for each Awards night by 2% each year.						
	 (α) Show that the amount remaining in the fund after the 2nd Awards night is \$9686.50. (β) Find the amount remaining in the fund after the 25th Awards night. Give your answer correct to the nearest dollar. 						
		×	લ્ક	THE END	80	%	

Year 12 Mathematics - Trial HSC 2004

QUESTION 1

- (a) $e^{-2.5} = 0.0821$ (to 3 significant figures)
- (b) $16x^2 36y^2 = 4(4x^2 9y^2)$ = 4(2x - 3y)(2x + 3y)
- (c) 4t = 5(2t 3)= 10t - 156t = 15 $t = 2\frac{1}{2}$
- (d) $\frac{12}{2+\sqrt{10}} = \frac{12(2-\sqrt{10})}{(2+\sqrt{10})(2-\sqrt{10})}$ $= \frac{12(2-\sqrt{10})}{4-10}$ $= \frac{12(2-\sqrt{10})}{-6}$ $= -2(2-\sqrt{10})$ $= -4+2\sqrt{10}$ $\therefore m = -4, n = 2$
- (f) 94% of radio price = \$42.30 1% of radio price = $\frac{$42.30}{94}$ 100% of radio price = $\frac{$42.30}{94} \times 100$ = \$45.00

QUESTION 2: (STAR A NEW PAGE)

2

2

3

3

2

(a) (i) Let
$$f(x) = (3-4x)^7$$

 $f'(x) = 7(3-4x)^6 \times (-4)$
 $= -28(3-4x)^6$

(ii) Let
$$f(x) = \frac{2x}{3x+1}$$

$$f'(x) = \frac{(3x+1)(2) - (2x)(3)}{(3x+1)^2}$$

$$= \frac{6x+2-6x}{(3x+1)^2}$$

$$= \frac{2}{(3x+1)^2}$$

(b) (i)
$$\int \frac{6}{1-2x} dx = -3\ln(1-2x) + c$$
 2

(ii)
$$\int_{0}^{\frac{\pi}{4}} \sec^{2} 3x \, dx = \frac{1}{3} [\tan 3x]_{0}^{\frac{\pi}{4}}$$

$$= \frac{1}{3} \{\tan \frac{3\pi}{4} - \tan 0\}$$

$$= -\frac{1}{3}$$

(c)
$$\frac{dy}{dx} = \frac{\sqrt{x} - 4}{x}$$

$$= x^{-\frac{1}{2}} - \frac{4}{x}$$

$$y = 2x^{\frac{1}{2}} - 4\ln x + c$$
at point (1,5)
$$5 = 2\sqrt{1} - 4\ln 1 + c$$

$$\therefore c = 3$$

$$y = 2\sqrt{x} - 4\ln x + 3$$

(ii) $3\cos 2\theta = 1$ $\cos 2\theta = \frac{1}{3}$ $2\theta = 1.230959 \text{ or } 5.052226$ $\theta = 0.62 \text{ or } 2.53 \text{ (to 2 decimal places)}$

(ii)
$$A = \int_{0}^{4} 2x \, dx + \int_{4}^{6} (6x - x^{2}) \, dx$$

$$= \left[x^{2}\right]_{0}^{4} + \left[3x^{2} - \frac{1}{3}x^{3}\right]_{4}^{6}$$

$$= \left\{4^{2} - 0\right\} + \left\{\left(3 \times 6^{2} - \frac{1}{3} \times 6^{3}\right) - \left(3 \times 4^{2} - \frac{1}{3} \times 4^{3}\right)\right\}$$

$$= 25\frac{1}{3}$$
Area = $25\frac{1}{3}$ u²

QUESTION 4: (STAR A NEW PAGE)

(a) (i) In $\triangle ACB$ and $\triangle CDE$ $A\hat{C}B = D\hat{C}E \text{ (common)}$ $A\hat{B}C = C\hat{D}E \text{ (both 90°)}$ $\triangle ABC = \triangle EDC \text{ (equiangular)}$

2

2

2

2

- (ii) $\frac{AC}{10} = \frac{10}{6}$ (ratio of corresponding sides in similar triangles) $AC = 16\frac{2}{3}$ length of $AC = 16\frac{2}{3}$ cm
- (b) (i) slope $AC = \frac{20+10}{5-20}$ = -2 \therefore slope $DB = \frac{1}{2}$ equation DB is $y-15 = \frac{1}{2}(x-30)$ $y-15 = \frac{1}{2}x-15$ $y = \frac{1}{2}x$

(ii) Let *D* be the point (2a,a) $AD^{2} = AB^{2}$ $(2a-5)^{2} + (a-20)^{2} = (5-30)^{2} + (20-15)^{2}$ $5a^{2} - 60a - 225 = 0$ $a^{2} - 12a - 45 = 0$ (a+3)(a-15) = 0 a = -3 or 15at point *D*, a = -3 $\therefore D \text{ is } (2a,a) = (-6,-3)$

(iii) Using coordinate geometry Midpoint of BD is
$$P(12,6)$$
 Equation of line AC is $y-20=-2(x-5)$ $y=-2x+30$ at point $P(12,6)$ LHS = y = 6 RHS = $-2x+30$ = $-2 \times (-12)+30$ = 6 $\therefore LHS = RHS$

: midpoint P lies on line AC

i.e. line AC bisects DB

or Using congruent triangles

Let
$$AC$$
 meet BD at P

In $\triangle ADP$ and $\triangle ABP$
 $AD = AB$ (given)

 $AP = AP$ (common)

 $A\hat{P}D = A\hat{P}B$ (both 90°, $AC \perp BD$)

 $\therefore \triangle ADP \cong \triangle ABP$ (RHS)

 $\therefore DP = BP$ (corresponding sides in congruent triangles)

 \therefore line AC bisects DB

3

QUESTION 5: (STAR A NEW PAGE)

(ii)
$$AC^2 = 100^2 + 160^2 - 2(100)(160)\cos 94^\circ$$

 $AC = 195 \text{km (to nearest km)}$

(iii)
$$\cos \theta = \frac{100^2 + AC^2 - 160^2}{2(100)(AC)}$$

 ≈ 0.5715
 $\theta = 55^\circ 8'$
bearing = $(28^\circ + 55^\circ)T$
= $083^\circ T$ (to nearest degree)

(b) (i) when
$$t = 5$$
, $R = 5(10 - 5)$
= 25
max. flow rate = 25 L/min

(ii)
$$V = \int (10t - t^2) dt$$

$$= 5t^2 - \frac{1}{3}t^3 + c$$
when $t = 0, V = 0 \Rightarrow c = 0$

$$V = 5t^2 - \frac{1}{3}t^3$$

(iii) when
$$V = 0$$

$$5t^2 - \frac{1}{3}t^3 = 0$$

$$\frac{1}{3}t^2(15 - t) = 0$$

$$t = 0 \text{ or } 15$$

$$\therefore \text{ time taken} = 15 \text{ minutes}$$

QUESTION 6:

(STAR A NEW PAGE)

(a) (i)

(ii)
$$V = \pi \int_{0}^{8} \left(2^{2} - x^{\frac{2}{3}}\right) dx$$
$$= \pi \left[4x - \frac{3}{5}f^{\frac{5}{3}}\right]_{0}^{8}$$
$$= \pi \left\{4 \times 8 - \frac{3}{5} \times 8^{\frac{5}{3}}\right\} - (0)$$
$$= \frac{64\pi}{3}$$
$$\therefore \text{ volume} = \frac{64\pi}{3} \text{ u}^{3}$$

(b) (i) $v = 3t^2 - 14t + 8$ a = 6t - 14when t = 0, a = -14initial acceleration $= -14 \text{ms}^{-2}$

(ii) at rest when v = 0 $3t^2 - 14t + 8 = 0$ (3t - 2)(t - 4) = 0 $t = \frac{2}{3} \text{ or } 4$ at rest after $\frac{2}{3}$ seconds or 4 seconds

(iii)
$$x = t^3 - 7t^2 + 8t + c$$

 $t = 0, x = 30 \Rightarrow c = 30$
 $\therefore x = t^3 - 7t^2 + 8t + 30$
when $t = 0, x = 30$
when $t = \frac{2}{3}$, $\ddot{x} = -10 < 0$, \therefore concave down \Rightarrow local max.tp
when $t = 4$, $\ddot{x} = 10 > 0$, \therefore concave up \Rightarrow local min.tp.
 $x = 4^3 - 7 \times 4^2 + 8 \times 4 + 30$
 $= 14$
 \therefore minimum distance $= 14$ km

QUESTION 7: (STAR A NEW PAGE)

(a)

x₁ x₂ x

ОΓ

(b) (i)
$$\frac{dM}{dt} = -kAe^{-kt}$$
$$= -kM \text{ since } M = Ae^{-kt}$$
$$\therefore \frac{dM}{dt} \propto M$$

(ii) when t = 0, M = 100 $100 = Ae^0$ A = 100when t = 2500, M = 75 $75 = 100e^{-2500k}$ $e^{-2500k} = 0.75$ $-2500k = \ln 0.75$ $k = \frac{\ln 0.75}{-2500}$ $= 1.15 \times 10^{-4}$ (to 3 significant figures)

(iii) when t = 4000 $M = 100e^{-1000 \cdot 1.15 \times 10^{-4}}$ ≈ 63 mass ≈ 63 grams

2

(iv) when
$$M = 5$$

 $5 = 100e^{-kt}$
 $e^{-kt} = 0.05$
 $-kt = \ln 0.05$
 $t = \frac{\ln 0.05}{-k}$
 ≈ 26049
time = 26000 years (to nearest 100 years)

. \

3

2

2

.3

- (a) (i) when t = 0 $M = 240 - 40\sqrt{1}$ = 200
 - ∴ initial mass = 200kg
 - (ii) when M = 0 $0 = 240 - 40\sqrt{t + 1}$ $40\sqrt{t + 1} = 240$ $\sqrt{t + 1} = 6$ t + 1 = 36 t = 35
 - : time = 35 minutes
 - (iii) $\frac{dM}{dt} = 0 40 \times \frac{1}{2} (t+1)^{-\frac{1}{2}}$ $= \frac{-20}{\sqrt{t+1}}$ when M = 100 $100 = 240 40\sqrt{t+1}$ $40\sqrt{t+1} = 140$ $\sqrt{t+1} = 3.5$ $\therefore \frac{dM}{dt} = \frac{-20}{\sqrt{t+1}}$ $= \frac{20}{3.5}$ $= -\frac{40}{7}$

 \therefore rate = $-\frac{40}{7}$ kg/min

- (b) (i) $AB \parallel DC$ opposite sides of parallelogram are parallel $\angle APD = \alpha'$ $AB \parallel DC$, alternate angles $AB \parallel DC$ are equal $AB \parallel DC$ of straight angle $AB \parallel DC$ are equal $AB \parallel DC$ of straight angle $AB \parallel DC$ of straight
 - $\angle BPC = (90 \alpha)^{\circ}$ (ii) $\angle ADC = 2\alpha^{\circ} (PD \text{ bisects } \angle ADC)$ $\angle ABC = 2\alpha^{\circ} (\text{opposite angles of parallelogram are equal})$ $\angle BCP + 2\alpha^{\circ} + (90 \alpha)^{\circ} = 180^{\circ} (\text{angle sum of } \Delta BPC = 180^{\circ})$ $\angle BCP = (90 \alpha)^{\circ}$ $\therefore \Delta BPC \text{ is isosceles } (\angle BPC = \angle BCP = (90 \alpha)^{\circ})$

2

3

3

3

- (a) (i) $AD = 4x\theta$
 - (ii) $ABCD = 2x + 3x\theta$
 - (iii) AD = ABCD $4x\theta = 2x + 3x\theta$ $x\theta - 2x = 0$ $x(\theta - 2) = 0$ $\theta = 2 (x \neq 0)$ \therefore angle = 2 radians
- (b) (i) $Area = \frac{1}{2}QR.PM$ Case (1) QR = 2QM QM = (h 8) can PM = (h 8) can P Case (1) if $h \ge 8$
 - Case 2 if h < 8 $QM^2 = 8^2 - (8 - h)^2$ (Pythagoras' Theorem)

 $QM^2 = 8^2 - (h - 8)^2$ (Pythagoras' Theorem)

3

- (ii) $0 \le h \le 16$
- (iii) $A = h(16h h^2)^{\frac{1}{2}}$ $\frac{dA}{dh} = (1)(16h h^2)^{\frac{1}{2}} + (h) \times \frac{1}{2}(16h h^2)^{-\frac{1}{2}} \times (16 2h)$ $= \sqrt{16h h^2} + \frac{8h h^2}{\sqrt{16h h^2}}$ $= \frac{2h(12 h)}{\sqrt{16h h^2}}$

for stat. pt.
$$\frac{dA}{dh} = 0$$

$$\frac{2h(12-h)}{\sqrt{16h-h^2}} = 0$$

$$2h(12-h)=0$$

h = 0 or 12

test stat. points

when h = 0, A = 0, \therefore min.area

when h = 12

h	<12 (=11)	12	>12 (=13)
$\frac{dA}{dh}$	$\frac{2(11)(1)}{\sqrt{16\times11-11^2}} > 0$	0	$\frac{2(13)(-1)}{\sqrt{16\times13-13^2}}$

Change in gradient (+ , 0 , -) and curve is continuous for $11 \le h \le 13$ \therefore stat. pt. is a local max. tp.

Since the area function is continuous for $0 \le h \le 16$ and there is only one max. tp. for 0 < h < 16 then the local max. tp. is the absolute max.

maximum A =
$$12\sqrt{12(16-12)}$$

$$=48\sqrt{3}$$

 \therefore maximum area = $48\sqrt{3}$ cm²

QUESTION 10: (STAR A NEW PAGE)

(i) Let $A_n = \text{amount in the fund after the } n^{\text{th}}$ awards night

$$\begin{split} A_1 &= 10000 \times 1.03 - 450 \\ A_2 &= A_1 \times 1.03 - 450 \\ &= \left(10000 \times 1.03 - 450\right) \times 1.03 - 450 \\ &= 10000 \times 1.03^2 - \left(1.03 + 1\right) \times 450 \\ &= 9695.50 \end{split}$$

 \therefore amount in fund = \$9695.50

(ii)
$$A_1 = 10000 \times 1.03 - 450$$

 $A_2 = A_1 \times 1.03 - 450$
 $= (10000 \times 1.03 - 450) \times 1.03 - 450$
 $= 10000 \times 1.03^2 - (1.03 + 1) \times 450$
:
 $A_n = 10000 \times 1.03^n - (1.03^{n-1} + 1.03^{n-2} + \dots + 1.03 + 1) \times 450$
 $= 10000 \times 1.03^n - 1 \times \left(\frac{1.03^n - 1}{1.03 - 1}\right) \times 450$
 $= 10000 \times 1.03^n - \left(\frac{1.03^n - 1}{0.03}\right) \times 450$
 $= 10000 \times 1.03^n - (1.03^n - 1) \times 15000$
 $= 10000 \times 1.03^n - 1.03^n \times 15000 + 15000$
 $= 15000 - 5000 \times 1.03^n$
 $A_n = 5000(3 - 1.03^n)$

2

3

(iii) when
$$n = 25$$

 $A_{25} = 5000(3 - 1.03^{25})$
 $= 4531.11$

∴ amount = \$4351 (to nearest dollar)

(iv)
$$A_n \ge 0$$
 2
 $5000(3-1.03^n) \ge 0$
 $3-1.03^n \ge 0$
 $1.03^n \le 3$
 $n \ln(1.03) \le \ln 3$
 $n \le \frac{\ln(1.03)}{\ln 3}$
 $n \le 37.16$

∴ max. number of awards nights = 37

(v) Let $\$B_n$ = amount in the fund after the n^{th} awards night

$$\begin{array}{ll} \alpha) & B_1 = 10000 \times 1.03 - 450 \\ B_2 = B_1 \times 1.03 - 450 \times 1.02 \\ &= \left(10000 \times 1.03 - 450\right) \times 1.03 - 450 \times 1.02 \\ &= 10000 \times 1.03^2 - \left(1.03 + 1.02\right) \times 450 \\ &= 9686.5 \end{array}$$

 \therefore amount in fund = \$9686.50

(β) Let
$$\$B_n$$
 = amount in the fund after the n th awards night

$$B_1 = 10000 \times 1.03 - 450$$

$$B_2 = B_1 \times 1.03 - 450 \times 1.02$$

$$= (10000 \times 1.03 - 450) \times 1.03 - 450 \times 1.02$$

$$= 10000 \times 1.03^2 - (1.03 + 1.02) \times 450$$

$$\vdots$$

$$B_n = 10000 \times 1.03^n - 450 \times \left\{1.03^{n-1} + 1.03^{n-2} \left(1.02\right) + 1.03^{n-3} \left(1.02^2\right) + \dots + 1.03 \left(1.02^{n-2}\right) + 1.02^{n-1}\right\}$$

2

2

$$B_n$$
 series is a GP with $a = 1.02^{n-1}$ and $r = \frac{1.03}{1.02}$

$$B_n = 10000 \times 1.03^n - 450 \times 1.02^{n-1} \times \left\{ \frac{\left(\frac{1.03}{1.02}\right)^n - 1}{\left(\frac{1.03}{1.02}\right) - 1} \right\}$$

$$=10000\times1.03^{n} - \frac{450\times1.02^{n-1}\left\{\frac{1.03^{n}-1.02^{n}}{1.02^{n}}\right\}}{\left(\frac{1.03-1.02}{1.02}\right)}$$

$$=10000\times1.03^{n}-\frac{450\times\left(1.03^{n}-1.02^{n}\right)}{0.01}$$

$$= 10000 \times 1.03^{n} - 45000 \times (1.03^{n} - 1.02^{n})$$

$$= 10000 \times 1.03^{n} - 45000 \times 1.03^{n} + 45000 \times 1.02^{n}$$

$$B_n = 45000 \times 1.02^n - 35000 \times 1.03^n$$

$$B_{25} = 45000 \times 1.02^{25} - 35000 \times 1.03^{25}$$

 \therefore amount in fund = \$545

X CS THE END 80 X